

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

LA β-FRUCTO FURANOSIDASE : APPLICATION À LA PRODUCTION DE PRÉBIOTIQUES

- 1 Activités enzymatiques de la β-fructofuranosidase (FFax) (27,5 points)
 - 1.1 L'activité fructofuranosidase (FA) de la FFase (7 points)
 - 1.1.1 Quelle est la classe enzymatique de la FFase ?
 - → Hydrolase.
 - **1.1.2 -** Écrire la réaction enzymatique catalysée par la FFase lorsque le substrat est du saccharose (formules exigées en représentation de Haworth).
 - → Saccharose + H₂O → Glucose + Fructose (4 points : 1 point pour la réaction d'hydrolyse et 1 point pour chaque formule en représentation de Haworth).

- 1.1.3 Pourquoi est-elle appelée également invertase ?
 - → Le mélange glucose+ fructose est appelé « sucre inverti » car il présente un pouvoir rotatoire spécifique global négatif (de -20°) alors que le saccharose a un pouvoir rotatoire spécifique positif (de +66°) <u>ou</u> inversion du pouvoir rotatoire spécifique.
- 1.2 Dépistage de la FFase dans les cultures de moisissures (10,5 points)
 - 1.2.1 Compléter les réactions biochimiques mises en jeu lors de la détection du glucose.
 - → Composé A = acide gluconique.
 - → Composé B = H₂O₂.
 - → Composé C = chromophore (= quinonéimine, qui est un produit rose).
 - 1.2.2 R° indicatrices et principales.
 - → Noms des réactions :
 - réaction 1 = réaction principale + justification ;
 - réaction 2 = réaction indicatrice + justification.
 - 1.2.3 Conditions opératoires généralement respectées.
 - → pH (proche du pH optimal), force ionique choisie et optimale.
 - → Température (proche de la température optimale) choisie.
 - → Temps.
 - → Concentration en substrats saturantes (obtention de Vmax).
 - 1.2.4 -
- 1.2.4.1
- → Vérification de l'absence de réaction non spécifique.
- → Validation de résultats expérimentaux.
- → Résultat attendu : aucun changement de couleur du milieu de culture.
- 1.2.4.2 Expliquer la présence d'un halo violet lors d'une réaction positive.
 - → Dans le gel, il y a présence d'un chromophore <u>bleu</u> (formé par la FDH) et le chromophore <u>rose</u> (quinonéimine) formé le système GOD-POD : le halo est donc violet globalement.
- 1.2.4.3 Analyse document 1.
 - → Celles qui entraînent la formation d'un halo violet le plus large possible ; exemple de A. niger ATCC 20611 ici.
- 1.3 L'activité fructosyl-transférase (FTA) de la FFase : test enzymatique (10 points)
 - **1.3.1** → Le 1-kestose = glucose-fructose.
 - → Formation en deux étapes :
 - saccharose + H₂O → Glucose + fructose;
 - saccharose + fructose → 1-kestose + H₂O.
 - **1.3.2** → Injection de 5 étalons (Glucose, saccharose = sucrose, GF2, GF3, GF4).

BTS BIOANALYSES ET CONTRÔLES - Éléments de corrigé	BARTHAGIS - SELEXISTEN	Session 2012
Nom de l'épreuve : Biochimie et technologies d'analyse	Code: BAE3BT/Bis	Page: 1/3

- 1.3.3 → Détection : réfractométrie.
 - → Utilisation ici car les glucides assurent la réfraction de la lumière précisément.
- 1.3.4 → Le débit.
 - → La phase mobile : % d'acétonitrile/eau.
- 1.3.5 → Schéma devant faire figurer : la phase mobile la pompe l'injecteur la colonne et précolonne le détecteur l'amplificateur de signal l'intégrateur/enregistreur et la sortie/récupération des déchets. (-0,5 par erreur ou omission).
- 1.3.6 → Intérêt HPLC : élution plus rapide ou meilleure séparation (1 seul intérêt attendu).

2 - Purification de la FFase (11,5 points)

- 2.1 → Étapes de lyse des cellules, libération du contenu cellulaire.
- 2.2 → Solubilité = f(force ionique).
- 2.3 → Principe.
 - → Type d'élution choisi : gradient discontinu de NaCl (augmentation de la force ionique)
 - → Stratégie différente : gradient de pH (décroissant).
- 2.4 Test activité sur fractions.
 - → établir le profil d'élution avec l'activité FFase et repérer ainsi les fractions actives.
- 2.5 Bilan de la purification de la FFase d'A. niger ATTCC 20611.
 - 2.5.1 -

→ Calculs : (4 types de calculs : AT, AS, R, E).

	at il présenté un pouvi	Rendement	Enrichissement
1	Extrait brut	100 %	a line of a longer of
	Extrait purifié	100 x (4477 x 8,6) = 10,4 % (3400 x 109)	$\frac{(4477 \times 8,6 / 13,7)}{(109 \times 3400 / 6770)} = 51,3$

- → Conclusion : il reste environ 10 % de l'enzyme à l'issue de la purification. Celle-ci a toutefois été concentrée d'un facteur 51,3.
- 2.5.2 -
 - → Méthode = SDS-PAGE ou gel-filtration (ou ultracentrifugation).

3 - Application en industrie alimentaire. (21 points)

- 3.1 Fabrication de sirops à teneur élevée en FOS (10 points)
 - 3.1.1 Analyse tableau.

Commenter les résultats.

- → K_M: représente 1/affinité et Vm représente la rapidité de la catalyse.
- → Meilleure efficacité globale pour le saccharose.

Justification

- 3.1.2 -
- 3.1.2.1 → Diminution du flux de perméation.
 - Principal inconvénient = colmatage progressif de la membrane de filtration.
- 3.1.2.2 → Pression exercée au niveau de la membrane, calculée à l'aide de la pression d'entrée et de la pression de sortie de la membrane.
- 3.1.2.3 → La nanofiltration permet de concentrer les FOS: on obtient donc un produit de composition proche du néosucre P.

Il faut un temps de nanofiltration supérieur à 12 heures pour obtenir le néosucre P.

- 3.2 Émergence d'effecteurs de la β-fructofuranosidase (11 points)
 - 3.2.1 → Dénaturation de l'enzyme + explication.
 - 3.2.2 → Effet: inhibiteur compétitif.
 - → <u>Justification</u>: même Vm quand la concentration de substrat est saturante mais Km variable: 1/K_M diminue donc Km augmente quand [Fru-S-ME] augmente: diminution de l'affinité. Fru-S-ME prend la place du saccharose dans le site de fixation.
 - 3.2.3 \rightarrow Rappel: $K_{Mapparent} = K_M (1 + [I]/K_i)$ soit $K_i = K_M \times [I] / (K'_M K_M)$.
 - → <u>Application numérique</u>: Ki = (1/0,03333) x 25 / ((1/0,00647) (1/0,03333)) ≈ 6,02 mmol/L.
 - 3.2.4 → Possibilité d'utiliser ce Fru-S-ME comme ligand dans une chromatographie d'affinité pour purifier la FFase. Cette technique, plus spécifique, permettrait de diminuer le nombre d'étapes de purification, d'augmenter le rendement et l'enrichissement.

BTS BIOANALYSES ET CONTRÔLES - Éléments de corrigé Session 2012			
0 1 DAEODT/D: D 0/0	BTS BIOANALYSES ET CONTRÔLES - Éléments de corrigé		Session 2012
Mam de l'énreure : Dischimie et technologies d'angives	Nom de l'épreuve : Biochimie et technologies d'analyse	Code: BAE3BT/Bis	Page : 2/3

LA β-FRUCTO FURANOSIDASE : APPLICATION À LA PRODUCTION DE PRÉBIOTIQUES

1 - Activités enzymatiques de la β-fructofuranosidase (FFax) (27,5 points) 1.1 - (7 points) 1.1.1 -1 point 1.1.2 -4 points 1.1.3 -2 points 1.2 - (10,5 points) 1.2.1 -1,5 point 1.2.2 -2 points 1.2.3 -2 points 1.2.4 - (5 points) Suilets of Pales early Canone mentaire 1.2.4.1 -2 points 1.2.4.2 -1 point 1.2.4.3 -2 points 1.3 - (10 points) 1.3.1 -2 points 1.3.2 -1 point 1.3.3 -2 points 1.3.4 -1 point 1.3.5 -3,5 points 1.3.6 -0,5 point 2 - Purification F de la FFase (11,5 points) 2.1 -0,5 point 2.2 -1 point 2.3 -3 points 2.4 -1 point 2.5 - (6 points) 2.5.1 -5 points 2.5.2 -1 point 3 - Application en industrie alimentaire (21 points) 3.1 - (10 points) 3.1.1 -3 points 3.1.2 - (7 points) 3.1.2.1 -2 points 3.1.2.2 -2 points 3.1.2.3 -3 points 3.2 - (11 points) 3.2.1 -2 points

BTS BIOANALYSES ET CONTRÔLES - Barème sur 60 points		Session 2012
Nom de l'épreuve : Biochimie et technologies d'analyse	Code : BAE3BT/Bis	Page: 3/3

4 points

3 points

2 points

3.2.2 -

3.2.3 -

3.2.4 -